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Abstract 
Glaciar Upsala, which calves into a lake on the eastern side of the Hielo Pata- 
gonico Sur, South America, has significantly retreated by 5 km during the last 20 
yr. The glacier near the terminus has thinned by about 33 m from 1990 to 1993. 
Bathymetric surveys made in 1998 at the proglacial lake revealed the existence 
of bedrock rises spreading out from exposed islands in the western part of the 
lake. Between 1978 and 1990, the western half of the glacier terminus was located 
at the bedrock rises, which suggests that the front fluctuations were strongly 
controlled by the bed topography. During 1990-93, the glacier terminus was 
located upstream from the bedrock rises, and it is considered to have been floating 
after estimation of the buoyancy. Significantly large extending strain rate of 0.22 
a-1 was deduced from the continuity consideration in 1990-93. These results are 
discussed with those obtained at Columbia Glacier, Alaska. 

Introduction 

According to the estimates of global glacier mass balance 
in the IPCC Report (Warrick et al., 1995), the total amount of 
iceberg calving accounts for about 70% of the total mass loss of 
all glaciers including two polar ice sheets, and for about 7% of 
the total mass loss of Arctic ice caps and mountain glaciers. In 
spite of their importance, processes and mechanisms of calving 
are less well understood than dynamics of noncalving glaciers. 

Research on calving glaciers has been mostly made at fiords 
in Alaska and the Arctic. It was known that, while some Alaskan 
tidewater glaciers were retreating catastrophically, some others 
were oscillating or advancing slowly (Mercer, 1961). Change in 
the terminus position of a calving glacier can be expressed as, 

dL/dt = Ui - Uc, (1) 

where L is the width averaged terminus position, Ui is the width- 
and depth-averaged ice velocity at the terminus, and Uc is the 
calving rate defined as the volume rate of iceberg discharge di- 
vided by the cross-sectional area of the terminus. The equation 
implies that two physical processes, flow (Ui) and calving (Uc), 
control the position of the glacier terminus. However, because 
measurements of Uc are usually not easy, Uc is estimated from 
the other two parameters in equation (1). 

Brown et al. (1982, 1983) estimated calving rates of 12 
glaciers in Alaska, and showed that the annual mean calving rate 
is best fitted by a simple proportionality to average water depth 
at the terminus, as 

Uc = kw, (2) 

where w is the water depth averaged over the width and over a 
year, and k a constant of proportionality. A similar form of linear 
relation has been widely applied to many other tidewater or 
freshwater calving glaciers (e.g., Funk and Rothlisberger, 1989; 
Pelto and Warren, 1991; Warren et al., 1995b). These calving 
equations seem to exhibit well the behaviors of tidewater gla- 
ciers: when the terminus of a glacier retreats into deeper water 
from the moraine shoal or the bed rise, the rate of calving in- 
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creases as shown in equation (2), which may lead to the further 
recession of the glacier by equation (1). 

It is sometimes pointed out that backstress (or backpressure) 
arising from the shoal or islands is crucial to the dynamics or 
stability of a glacier. Meier and Post (1987) explained rapid dis- 
integration of grounded tidewater glaciers by the relation (equa- 
tion 2) and also a feedback process including backpressure; 
namely "retreat decreases backpressure on the glacier, increasing 
its stretching and velocity, causing thinning, which decreases the 
effective pressure on the bed, causing further increase in stretch- 
ing and further increase in calving." Hughes (1992) attempted 
to develop a calving theory for ice walls grounded in water, and 
derived a calving law in which calving rates are controlled by 
bending creep behind the ice wall. However, one cannot quan- 
titatively estimate a calving rate of a glacier based on his theory, 
because it includes some parameters which are not easily mea- 
sured. 

According to Meier and Post (1987), no temperate tidewater 
glaciers have floating termini, although the floating condition has 
been reached locally and temporarily at Columbia Glacier, Alas- 
ka. This may be because the floating temperate ice can easily be 
broken off by tidal movements or currents due mainly to weak- 
ening of ice by the effect of water percolating through crevasses, 
cracks and veins. Consequently, if the terminus of a glacier be- 
comes sufficiently thin to nearly float, the terminus portion 
calves to maintain a thickness somewhat in excess of the flota- 
tion thickness. This is the "height-above buoyancy model" pro- 
posed by Van der Veen (1996). According to this model, the 
position of the terminus (L in equation 1) is controlled by such 
geometric factors as ice thickness and water depth, so that calv- 
ing rate Uc is not a cause but an effect given by equation (1). 
By analyzing data from Columbia Glacier, it was shown that, 
during the retreat, the thickness at the terminus appears to be 
linearly correlated with the water depth (Van der Veen, 1996). 
The thickness in excess of flotation at the terminus ranges from 
about 30 to 100 m, with a mean at about 50 m. 

On the basis of force balance consideration and data anal- 
yses for Columbia Glacier, Van der Veen (1997) and Whillans 
and Venteris (1997) concluded that backstress emanating from 
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FIGURE 1. Map showing the 
location of Glaciar Upsala in 
the southern part of the Hielo 
Patagonico Sur (HPS: Southern 
Patagonia Icefield). 

the glacier bed is unimportant for the dynamics and stability of 
grounded tidewater glaciers, and decrease in backstress was not 
the main cause for the retreat of Columbia Glacier. Venteris et 
al. (1997) emphasized the importance of the rate of longitudinal 
stretching for the dynamics of the glacier. Meier (1997) stated 
that the height-above-buoyancy model seems useful in explain- 
ing aspects of calving and suggests an increase in calving with 
ice thinning, even though it cannot apply when the effective 
pressure at the bed (ice pressure minus water pressure) approach- 
es zero. 

At Glaciar Upsala, a lacustrine calving glacier in southern 
Patagonia, discussion on the glacier dynamics has been insuffi- 
cient so far due to lack of ice thickness data. Bathymetric sur- 
veys were therefore extensively carried out in 1997-1998 near 
the terminus of the glacier. Since the glacier has retreated by 
about 5 km during the last 20 yr, we can roughly reconstruct the 
geometry of the frontal 5-km portion of the former glacier using 
the water depth data (Skvarca, unpublished). In the present pa- 
per, we try to estimate and discuss such dynamic features as the 
effect of the bed topography, the height above buoyancy, and 
the longitudinal stretching of a freshwater calving glacier, com- 
paring with a tidewater glacier (Columbia Glacier), both thinning 
and retreating significantly during these two decades. 

Glaciar Upsala and Its Recent Behavior 
In Patagonia, a number of glaciers calve into fiords on the 

western side and into large proglacial lakes on the eastern side 

of two icefields (Warren, 1994; Warren et al., 1995a). Among 
these glaciers, Glaciar Upsala (Fig. 1), 60 km in length and 902 
km2 in area (Aniya et al., 1996), is one of the largest freshwater 
calving glaciers. The accumulation area (611 km2) is located to 
the east of the north-south ice divide on the Hielo Patag6nico 
Sur (HPS: Southern Patagonia Icefield). The ablation area, in the 
form of a valley glacier about 3 km wide near the terminus, 
flows southward finally calving into Brazo Upsala (Fig. 2) at 
about 180 m a.s.l., a western arm of Lago (Lake) Argentino. 

Recent fluctuations of Glaciar Upsala are worthy of note. 
Front positions of the glacier during the last half century were 
examined on the basis of topographic maps, aerial photographs, 
and satellite data (Aniya et al., 1992; Aniya and Skvarca, 1992; 
Skvarca et al., 1995a, 1995b). From 1945 to 1978 the glacier 
had been almost stable, and the retreat started in 1978. In Figure 
2, front margins of the glacier in 1981, 1990, 1993, 1996, and 
1998 are illustrated. We can clearly see in Figure 3 a remarkable 
change between 1993 and 1999 in the feature of the frontal part 
of Glaciar Upsala. Cumulative retreat distances averaged over 
the glacier width from 1968 to 1998 are shown in Figure 4. A 
considerably large recession of about 800 m a- 'occurred in mid- 
1994 (Naruse et al., 1997), then retreat slowed until 1997 when 
two Radarsat images revealed that a drastic calving occurred 
between January and May 1997, filling Brazo Upsala with ice- 
bergs (Aniya et al., 2000a). According to the information pro- 
vided by a local park ranger, this major calving event took place 
in mid-March. 
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FIGURE 2. Plane view of the frontal part of Glaciar Upsala, 
which flows from the top (north) to the bottom (south) and finally 
calves into Brazo Upsala of Lago Argentino. The 1981 (Feb- 
ruary) front margin was determined by vertical aerial photo- 
graphs (Aniya and Skvarca, 1992), the 1990 (November) margin 
is based on observations in situ, and the 1993 (November), the 
1996 (December), and the 1998 (December) margins were mea- 
sured by conventional angle and GPS surveys (Skvarca et al., 
1995a, 1995b; Naruse et al., 1997; present study). The glacier 
width becomes narrower with retreating and thinning, therefore 
the lateral margins are drawn approximately as those in the mid 
1990s. CP and AP on the eastern (lefthand side) bank indicate 
the control point and the azimuth point for surveys of the surface 
profile and the glacier flow. Thick solid lines show longitudinal 
sections of bathymetry LI, L2, and L3, and thick broken lines 
show transverse sections Tl, T2, and T3, measured in December 
1998. 

Repeated surveys of the glacier surface were made in 1990 
and 1993 along a transverse line fixed in space from the control 
point CP (Fig. 2) to the center line of the glacier at about 2.5 
km and 1 km from the terminus in 1990 and 1993, respectively. 
Remarkably large thinning rates of ice were obtained ranging 
from 14 m a- near the eastern margin to 9.5 m a- in the central 
part, with a mean value of 11.1 m a- (Naruse et al., 1995a; 
Skvarca et al., 1995b). These thinning rates are much larger than 
values measured at other glaciers in Patagonia; namely, 5.2 m 

a- at Glaciar Soler (Aniya and Naruse, 1987), 4.0 m a- and 
3.1 m a- at Glaciar Tyndall, and almost zero at Glaciar Perito 
Moreno (Naruse et al., 1995b; Skvarca and Naruse, 1997). 

Very fast flow velocities were obtained at the same trans- 
verse line: 1300 m a-1 in November 1990 (Naruse et al., 1992) 
and 1600 m a-1 in November 1993 (Skvarca et al., 1995b) near 
the center line of Glaciar Upsala. Ablation rates were also mea- 
sured in November 1993 with a mean of 58 mm d-~ (in ice 
thickness) near the glacier terminus (Skvarca et al., 1995b). 

Naruse et al. (1997) discussed some possible causes of the 
thinning behavior of Glaciar Upsala. Using ablation data at Gla- 
ciar Perito Moreno and temperature data at the meteorological 
station Calafate, annual ablation rates near the Glaciar Upsala 
terminus were estimated to fluctuate from about 14 m a- to 18 
m a- in ice thickness during the last 30 yr. The range (4 m a-1) 
of year-to-year variations in annual ablation is much smaller than 
the measured ice thinning (11 m a-l). Thus, it was concluded 
that the change (rise) in air temperature alone could not elucidate 
the thinning rate. The thickness change at the ablation area is a 
result of difference between the emergence velocity and the net 
ablation rate. Then, a scenario was suggested similar to a feed- 
back proposed for Columbia Glacier by Meier and Post (1987). 
At Glaciar Upsala, the retreat may have resulted in reduction of 
longitudinal compressive stress exerted from bedrock rises and 
islands, causing a considerable decrease in the emergence flow. 
Thus, the ice may have thinned significantly in recent years be- 
cause of reduction in emergence velocity. 

Bathymetric Surveys at the Proglacial Lake 

Measurements of water depth at Brazo Upsala were first 
made in February 1994 and March 1997 by H. Svetaz (pers. 
comm., 1997) with an echo-sounder (Furuno Electric Co.) at 
about 50 points near the glacier terminus. Secondly, extensive 
bathymetric surveys were carried out in December 1998 by one 
of the present authors (Skvarca, unpublished). An echo-sounder 
used in the surveys is the ECHOTRAC (DF 3200 MKII, Odom 
Hydrographic Systems Inc.) which can measure water depth 
from 7.5 m to 6000 m with an accuracy of 0.042% of the depth. 
The ECHOTRAC sounder was connected to a GPS instrument, 
and measurements were sequentially made every 5 s from a 
slowly cruising rubber raft. An accuracy of the absolute position 
of each point is estimated as ?100 m. The surveyed area cor- 
responds to the region in which the glacier terminus has receded 
during the last 20 yr (Fig. 2). 

Longitudinal profiles of the lake bottom along three sec- 
tions LI, L2, and L3 (Fig. 2) are shown in Figure 5. Hereafter, 
D(n) denotes the longitudinal distance n (km) in this coordinate. 
Along LI stretching in parallel with two islands, very shallow 
depths (<200 m) are observed between D(1) and D(4). The lake 
bottom deepens upstream from D(3) in LI, from D(5) in L2, 
and from D(0.5) in L3. 

Next, transverse profiles along Tl, T2, and T3 are shown 
in Figure 6. The profile Ti represents a typical U- or V-shape 
valley with a maximum depth of 600 m slightly westward from 
the center of the channel. On the other hand, the profiles T2 and 
T3 exhibit the bedrock rises which may be connected to the three 
islands exposed in the western part of the channel. Particularly, 
a western one third of T2 indicates a shoal. The largest depth in 
T2 is found as 600 m at a slightly eastward site from the center. 
It became clear that the main trough of the bed turns slightly 
toward the east in the region from D(7) to D(1). 
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FIGURE 3. The frontal part of Glaciar Upsala in November 1993 (Upper photo) and March 1999 
(Lower photo), viewed from the control station (marked by CP in Fig. 2) on the eastern (lefthand side) 
bank. A tributary glacier flowing from the eastern valley is Glaciar Bertacchi, and a snow-covered, 
pyramidal peak is Cerro Cono (2440 m). (Both photos by P. Skvarca.) 

Discussion 
EFFECT OF BED TOPOGRAPHY ON THE 
GLACIER FLUCTUATION 

As mentioned above, large changes in front positions of 
Glaciar Upsala did not occur before 1978. Figure 4 shows that 
the width-averaged front retreated remarkably in 1981-1984, 
1990-1994, and 1996-1998. However, it is noticed in Figure 2 
that between 1981 and 1990 the large retreats occurred predom- 
inantly in the eastern half of the glacier. During this period, the 
western half of the glacier terminus was located at the bed bump 
as seen in LI (Fig. 5) and T2 (Fig. 6). Hence, the frontal fluc- 
tuations before 1990 are considered to be strongly controlled by 
the bed topography in the western part of Brazo Upsala. 

Whereas in the period from 1990 to 1998, though calving 
retreats occurred alternately in the western half and the eastern 
half, the cumulative retreat distance was almost uniform over the 
glacier width (Fig. 2). Bedrock topography in the region to the 
north of D(4) indicates a relatively gentle slope (L2 of Fig. 5), 
and a smooth concave cross profile (Tl of Fig.6). 

Naruse et al. (1997) suggested that after 1990 the very 
small longitudinal compressive stress near the terminus might 
have resulted from a considerable reduction in backstress from 
bedrock rises and islands near the front. Although this remark 
may still be relevant, we cannot evaluate how significant the 
backstress was before 1990. However, there is no doubt that the 
islands and the surrounding bedrock rises should have affected 
the glacier dynamics, at least in the western half, when the gla- 
cier terminus was located there. 

FLOTATION OF THE GLACIER FRONT 

Van der Veen (1996), using aerial photogrammetry data 
from Columbia Glacier, showed that height above buoyancy at 
the terminus decreased gradually from about 100 m in 1976 to 
30 m in 1991, synchronizing somewhat with the glacier retreat. 
Height above buoyancy, or ice thickness in excess of flotation 
F, is defined as 

F = (h + w) -w /p,, (3) 
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t i i ! i t u - where, h is the surface height above the water level, w is the 
water depth, and Pw and p, are densities of water and ice, re- 

Glaciar bsa/la spectively. 
Heights of glacier surface above water near the terminus 

Pao agon ia /were measured by conventional angle surveys in November 
1993, namely 45 m at D(5.3) for a front cliff (J. Leiva and R. 
Sendra, pers. comm., 1995) and 55 m at D(6.3) about 1 km up- 
glacier from the front (Skvarca et al., 1995), both near the glacier 
center line. From the bed profile L2 (Fig. 5), we can see the 
water depths of about 400 m at D(5.3) and about 550 m at 
D(6.3). Hence the water depths divided by ice density 900 kg 
m-3 yield 444 m and 611 m (Table 1), which are almost equal 
to the estimated ice thicknesses (445 m and 605 m, respectively). 
In other words, the effective pressure at the bed is nearly zero. 

/ _ This estimate indicates that the frontal, central part of the glacier 
was just in flotation in summer 1993. Whereas, at 2.5 km up- 
glacier from the terminus near the center in 1990, F was 23 m 

*-*- (Table 1). 

i i afi i a a J iFrom this consideration, it is found that a temperate glacier 
168 73 78 83 88 93 98 with a floating terminus in freshwater really exists. Also, Glaciar 

Nef in northern Patagonia exhibited the bending southward float- 
Ye a r ing tongue on the JERS-1 image in 1993 (Aniya et al., 2000b). 

4. Width-averaged retreat distance of Glaciar Upsala Furthermore, we can propose that the "height-above buoyancy 

8 to 1998. model" with a mean excess height of 50 m may not be applied 
to freshwater calving glaciers. 

South 

L1 
1U0 

0 ~~~~~~200 
- ........... 300 

400 

-500 

,600 

So u 700 
South 

0 

100 

200 ------- 

5C 300-- 

600 _ 

700 North 

South 

North 
o 

North 

L2 

North 
1 o 

1 100 

L3 
~~~~~~~~~~~~i k ~~200 

1300 

400 

500 

600 

700 

1 2 3 4 

g 
C- 
OL 

5 6 7 

Longitudinal Distance (km) 
FIGURE 5. Longitudinal profiles of water depth along LI, L2, and L3 in Brazo Upsala, western arm 
of Lago Argentino. Seven open squares seen in LI are data measured in 1994 and 1997 by H. Svetaz 
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THE CONTINUITY CONDITION NEAR THE 
GLACIER TERMINUS 

We now examine a mechanism of the glacier recession from 
a point of view of ice dynamics. The continuity condition (mass 
conservation) at any point of a parallel-sided glacier can be ex- 

pressed as, 

aH/it = b - u(ah/dx + aw/lx) - Hau/lx, (4) 

where, H (= h + w) is ice thickness, b is surface mass balance 

(negative for ablation), u is depth-averaged flow velocity, x is 

longitudinal distance taken positive down-glacier, and t is time. 

Melting at the bottom and sides of glacier is neglected and ice 
is assumed as incompressible. We now evaluate the contributions 
of each term to the ice thinning, particularly the longitudinal 
strain rates au/dx. This equation is applied to the frontal part of 
Glaciar Upsala in 1990-1993 when some field measurements 
were made. 

Parameters in equation (4) near the glacier center line in 
1990-1993 were estimated as follows: aH/at = - 10 m a- , mea- 
sured at around D(6.3) from 1990 to 1993. b = -16 + 2 m a-1, 
estimated from annual measurement of ablation at Glaciar Perito 
Moreno (Naruse et al., 1997). Flow velocities (1300 m a-' and 
1600 m a-') were obtained at D(6.3) in November. At Glaciar 
Perito Moreno, velocities in November are slightly, about 10 %, 
larger than the annual mean value. Depth-averaged velocity is 

TABLE 1 

Calculation on floatation near the terminus of Glaciar Upsala 

Excess floa- 

Height h tation 
Time Position (m) Depth w (m) F (m)a 

Nov. 1993 1 km from 1993 front 56 m 550 m -0 

glacier center line 
Nov. 1993 Cliff at 1993 front gla- 44 m 400 m -0 

cier center line 
Nov. 1993 1 km from 1993 front 26 m (300 m)b (-0) 

0.5 km from eastern 

margin 
Nov. 1990 2.5 km from 1990 front 84 m 550 m 23 m 

glacier center line 
Nov. 1990 2 km from 1990 front 64 m (300 m) (30 m) 

0.5 km from eastern 

margin 

a When F is calculated as in a negative value, F is shown as -0, because 

(h + w) does not indicate ice thickness in such condition. 
b Values in parentheses are less accurate, due to extrapolation of w. 

assumed as 90% of the surface value. Hence, u = 1200 m a-', 
assumed for an annual mean value. From surface heights h (Ta- 
ble 1) at D(5.3) and D(6.3), dh/dx = -0.012. From the bedrock 
profile L2 (Fig. 5), a mean bed slope between D(5.3) and D(7.3) 
is derived as dw/dx = -0.108. As to a mean thickness at D(6.3) 
between 1990 and 1993, H = 620 m. 

Thus, longitudinal (extension) strain rate, au/ax, was cal- 
culated from equation (4) as 0.22 a-1, which is significantly larg- 
er than typical values in temperate glaciers (Paterson, 1994, 
p.253). This result implies that the glacier near the terminus was 
stretching longitudinally with a significant degree though it was 
in the ablation area. The similar behavior was found at Columbia 
Glacier, where along-flow extension rate near the terminus in- 
creased rapidly from about 0.05 a-1 in 1981 to about 0.6 a-' in 
1985 in harmony with the front retreat (Venteris et al., 1997). 
The large extension was considered to be controlled by a lon- 
gitudinal increase in basal sliding toward the terminus due to the 
basal water system (Van der Veen, 1996; Venteris et al., 1997). 

Conclusions 
Before 1990, when the terminus of Glaciar Upsala was lo- 

cated at or farther southward from the islands and the surround- 
ing bedrock rises in the western part of Brazo Upsala, the dy- 
namic behavior should be affected by the bed topography in 
terms of normal and shear stresses. During 1990-93, the glacier 
terminus is considered to have been floating, which may indicate 
a difference between freshwater and tidewater calving glaciers. 
Significantly large longitudinal extension strain rate of 0.22 a-' 
was deduced for the same period, which should be caused by 
the enhanced basal sliding near the terminus. Stretching results 
in ice thinning, which may cause extensive calving, so that the 
glacier retreats farther. However, a question what phenomenon 
is a fundamental cause for variations of freshwater calving gla- 
ciers remains unsolved until future studies. 
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